Computing Weierstrass semigroups and the Feng-Rao distance from singular plane models
نویسندگان
چکیده
We present an algorithm to compute the Weierstrass semigroup at a point P together with functions for each value in the semigroup, provided P is the only branch at infinity of a singular plane model for the curve. As a byproduct, the method also provides us with a basis for the spaces L(mP ) and the computation of the Feng-Rao distance for the corresponding array of geometric Goppa codes. A general computation of the Feng-Rao distance is also obtained. Everything can be applied to the decoding problem by using the majority scheme of Feng and Rao.
منابع مشابه
On the second Feng-Rao distance of Algebraic Geometry codes related to Arf semigroups
We describe the second (generalized) Feng-Rao distance for elements in an Arf numerical semigroup that are greater than or equal to the conductor of the semigroup. This provides a lower bound for the second Hamming weight for one point AG codes. In particular, we can obtain the second Feng-Rao distance for the codes defined by asymptotically good towers of function fields whose Weierstrass semi...
متن کاملOn the parameters of Algebraic Geometry codes related to Arf semigroups
In this paper we compute the order (or Feng-Rao) bound on the minimum distance of one-point algebraic geometry codes CΩ(P, ρlQ), when the Weierstrass semigroup at the point Q is an Arf semigroup. The results developed to that purpose also provide the dimension of the improved geometric Goppa codes related to these CΩ(P, ρlQ).
متن کاملRemarks on Numerical Semigroups
We extend results on Weierstrass semigroups at ramified points of double covering of curves to any numerical semigroup whose genus is large enough. As an application we strengthen the properties concerning Weierstrass weights stated in [To]. 0. Introduction Let H be a numerical semigroup, that is, a subsemigroup of (N,+) whose complement is finite. Examples of such semigroups are the Weierstras...
متن کاملThe approach of Stöhr-Voloch to the Hasse-Weil bound with applications to optimal curves and plane arcs
1. Linear series on curves 1.1. Terminology and notation 1.2. Morphisms from linear series; Castelnuovo’s genus bound 1.3. Linear series from morphisms 1.4. Relation between linear series and morphisms 1.5. Hermitian invariants; Weierstrass semigroups I 2. Weierstrass point theory 2.1. Hasse derivatives 2.2. Order sequence; Ramification divisor 2.3. D-Weierstrass points 2.4. D-osculating spaces...
متن کاملSome algorithms for computing the minimum distance of evaluation codes
Our purpose is to present some computations and estimates for the minimum distance of some families of evaluation codes. We introduce the Feng-Rao distance of an algebraic-geometry code and its extension to codes from order domains. Finally we give an algorithm to compute the Feng-Rao distance of a code from an order domain and we show its implementation in the computer algebra system SINGULAR.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره math.AG/9910155 شماره
صفحات -
تاریخ انتشار 1999